Neural Network Classification Using Error Entropy Minimization

نویسندگان

  • Jorge M. Santos
  • Luís A. Alexandre
  • Joaquim Marques de Sá
چکیده

One way of using the entropy criteria in learning systems is to minimize the entropy of the error between two variables: typically, one is the output of the learning system and the other is the target. This framework has been used for regression. In this paper we show how to use the minimization of the entropy of the error for classification. The minimization of the entropy of the error implies a constant value for the errors. This, in general, does not imply that the value of the errors is zero. In regression, this problem is solved by making a shift of the final result such that it’s average equals the average value of the desired target. We prove that, under mild conditions, this algorithm, when used in a classification problem, makes the error converge to zero and can thus be used in classification.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Neural network classification using Shannon's entropy

The last years have witnessed an increasing attention to entropy-based criteria in adaptive systems. Several principles were proposed based on the maximization or minimization of entropic cost functions. We propose a new type of neural network classifiers with multilayer perceptron (MLP) architecture, but where the usual mean square error minimization principle is substituted by the minimizatio...

متن کامل

The Error Entropy Minimization Algorithm for Neural Network Classification

One way of using the entropy criteria in learning systems is to minimize the entropy of the error between two variables: typically, one is the output of the learning system and the other is the target. This framework has been used for regression. In this paper we show how to use the minimization of the entropy of the error for classification. The minimization of the entropy of the error implies...

متن کامل

Optimization of the Error Entropy Minimization Algorithm for Neural Network Classification

One way of using entropy criteria in learning systems is to minimize the entropy of the error between the output of the learning system and the desired targets. In our last work, we introduced the Error Entropy Minimization (EEM) algorithm for neural network classification. There are some sensible aspects in the optimization of the EEM algorithm: the size of the Parzen Window (smoothing paramet...

متن کامل

Improving Error Back Propagation Algorithm by using Cross Entropy Error Function and Adaptive Learning Rate

Improving the efficiency and convergence rate of the Multilayer Backpropagation Neural Network Algorithms is an important area of research. The last researches have witnessed an increasing attention to entropy based criteria in adaptive systems. Several principles were proposed based on the maximization or minimization of cross entropy function. One way of entropy criteria in learning systems i...

متن کامل

Error Entropy Minimization for LSTM Training

In this paper we present a new training algorithm for the Long Short-Term Memory (LSTM) recurrent neural network. This algorithm uses entropy instead of the usual mean squared error as the cost function for the weight update. More precisely we use the Error Entropy Minimization approach, were the entropy of the error is minimized after each symbol is present to the network. Our experiments show...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004